Department of Electronics

Statement of Programme Specific Outcomes (PSOs)

Programme: B Sc. Electronics

By the end of this programme, the students will be able to:

- 1. Understand the basic concepts of electronics components, network theorem, digital electronics, semi conductor devices, amplifier, theory, AD circuits, basic circuits, design using circuit maker software and their application
- 2. Analyze different parameters of various circuits
- 3. Understand the use of electronics in the field of computer science.
- 4. Perform and testing of different electronics components and circuits.
- 5. Analyze the different characteristics of the circuits.
- 6. Understand the application of Electronics in domestic appliances
- 7. Analyze the relationship between analogue and digital circuits.

Statement of Course Outcomes (COs)

Programme: B Sc SEM I Course: electronics components, network theorem

Course Outcomes: By the end of this course, the students will be able to:

- 1. Identify the different electronics components used in electronic circuits.
- 2. Understand different concepts of electronics and network theorem.
- 3. Understand different concepts of semiconductor materials and devices.
- 4. Determine various characteristics of diodes and transistors.

Programme: B Sc SEM I Course: Fundamental of Digital Electronics

Course Outcomes: By the end of this course, the students will be able to:

- 1. Understand the concepts of digital electronics
- 2. Understand the basic working of different logic gates and laws of Boolean Algebra for simplification of circuits.
- 3. Understand the concepts of K-maps and designing of logic circuits.
- 4. Understand and design different controlling circuits used in digital electronics.

Programme: B Sc SEM I Course: Practical

- 1. Perform the calculations on combination of basic components such as resistors and capacitor
- 2. Work on network theorems
- 3. Analyze the characteristics of different diodes and BJT
- 4. Perform the binary addition of more than 3 bits
- 5. Simplify and summarize the given logical circuits.

- 6. Convert the number in various number systems.
- 7. Explain the basics and universal gates.

Programme: B Sc SEM II Course: Semiconductor Device

Course Outcomes: By the end of this course, the students will be able to:

- 1. Describe working, characteristics and applications of semiconductor devices.
- 2. Understand and describe special high power semiconductor.
- 3. Analyze different parameters and relation between the different terms related to amplifier.
- 4. Classification of different amplifier and analyze the concepts of different types of amplifier.

Programme: B Sc SEM II Course: Advance digital electronics

Course Outcomes: By the end of this course, the students will be able to:

- 1. Understand the concepts of different logic family and comparison of different parameters of logic family.
- 2. Understand the concept of sequential logic circuits and study of different sequential circuit with reference to storage.
- 3. Understand different counting circuits and their applications.
- 4. Understand different digital storage devices, memory, and their classification with expansion.

Programme: B Sc SEM II Course: Practical

Course Outcomes: By the end of this course, the students will be able to:

- 1. Understand and analyze the characteristics of JFET, MOSFET and high power devices.
- 2. Explain the working of UJT and Oscillator.
- 3. Explain the combinational and sequential logic circuits.
- 4. Explain the working of transistor as a switch.

Programme: B Sc SEM III Course: OP-AMP and power supply

Course Outcomes: By the end of this course, the students will be able to:

- 1. Understand and compare different amplifier
- 2. Analyze the different parameters of OP-AMP
- 3. Understand the application of OP-AMPs for positive and negative feedback concept.
- 4. Understand the concept of unregulated and regulated power supply
- 5. Understand the IC regulator, different regulator and their performances.

Programme: B Sc SEM III Course: Electronics circuit design.

- 1. Understand the concepts and ideas of designing circuit using computers.
- 2. Understand circuit maker software

- 3. Analyze different parameters of simple circuit and setting of different parameters using circuit maker
- 4. Understand the concept of virtual instrumentation and advance virtual instrumentation.

Programme: B Sc SEM III Course: Practical

Course Outcomes: By the end of this course, the students will be able to:

- 1. Explain the OP-AMP as linear and non-linear device.
- 2. Understand the working of regulated and unregulated power supply.
- 3. Identify the circuit symbols and components of circuit maker software.
- 4. Design and perform the different amplifier circuit maker.

Programme: B Sc SEM IV Course: Analog & digital Techniques

Course Outcomes: By the end of this course, the students will be able to:

- 1. Describe OPAMP as different types of RC, AC ASCILLATORS
- 2. Understand OP AMP as multi vibrators
- 3. Design and explain A to D and D to A convertors.
- 4. Describe the positive and negative feedback and advantages of positive feedback.

Programme: B Sc SEM IV Course: Electronic Instrumentation

Course Outcomes: By the end of this course, the students will be able to:

- 1. Classify the transducers and description of their characteristics.
- 2. Summarize the Im35 transducer and its application
- 3. Understand working and block diagram of biomedical instruments.
- 4. Understand the block diagram for electronic system.

Programme: B Sc SEM IV Course: Practical

Course Outcomes: By the end of this course, the students will be able to:

- 1. Understand working of Op AMP as vien bridge and phase shift
- 2. Describe different types of ADC, DAC and sample and hold circuit
- 3. Summarize the transfer characteristics of different transducers
- 4. Compare the accuracy of digital multi meters.

Programme: B Sc SEM V Course: Electronics Communication

- 1. Understand the basics of electronics communication and types of communication
- 2. Describe different propagation modes of signals
- 3. Understand the concept of digital communication
- 4. Understand fiber optics communication system and concept of modern communication system.

Programme: B Sc SEM V Course: Fundamental of Microprocessor

Course Outcomes: By the end of this course, the students will be able to:

- 1. Understand and describe 8085 microprocessor
- 2. Describe different modes of operation of 8085 microprocessor
- 3. Understand different instruction set of microprocessor
- 4. Understand the need of interfacing and different modes of data transfer

Programme: B Sc SEM III Course: OP-AMP and power supply

Course Outcomes: By the end of this course, the students will be able to:

- 1. Perform communication system practical using PC/ microcontroller
- 2. Perform ASK and FSK using OPAMP
- 3. Perform simple assembly language program using instruction of 8085 microprocessor
- 4. Understand and study the PPI 8255

Programme: B Sc SEM VI Course: Programming in C

Course Outcomes: By the end of this course, the students will be able to:

- 1. Understand the basic of C language
- 2. Understand different syntax, keywords and operators used in C
- 3. Understand different control statement related to C programming
- 4. Understand the concepts of advanced data types
- 5. Understand the concept of file structure in C language.

Programme: B Sc SEM VI Course: Microcontroller 8051

Course Outcomes: By the end of this course, the students will be able to:

- 1. Understand basics of 8051 microcontroller
- 2. Understand different instruction and addressing modes of microcontroller
- 3. Understand the concept of subroutines and simple programming
- 4. Describe interfacing of different I/D devices with personal computer.

Programme: B Sc SEM III Course: Practical

- 1. Perform simple programmes based on I/D functions and operators
- 2. Perform to understand the concept of file operations in C
- 3. Perform program related structures
- 4. Perform ADC and DAC interface with microcontroller applications.