DEPARTMENT OF ZOOLOGY

PROGRAMME: M.Sc.

Statements of Programme Specific Outcomes (PSOs)

By the end of this course, the students will be able to:

- 1. Understand the structure & function of invertebrates.
- 2. Compare the physiology of animals.
- 3. Understand the biology of cell and genetic principles.
- 4. Compare the reproductive biology of animals.
- 5. Classify the invertebrates and their respective physiologies.
- 6. Perform the cell biology and advances reproductive biology experiments.

Statements of Course Outcomes (COs)

M.Sc. I Course: SEM-I; Paper 1, T₁

By the end of this course, the students will be able to:

- 1. Classify the animals on the basis of molecular taxonomy.
- 2. Describe the ultrastructure of locomotory organs.
- 3. Compare the reproductive systems of Platyhelminthes.
- 4. Describe the respiratory organs in Arthropda.
- 5. Understand the water vascular system and larval forms of Echinodermata.
- 6. Explain the general affinities of Minor Phyla.

M.Sc. I Course: SEM-I; Paper 1, T₂

By the end of this course, the students will be able to:

- 1. Understand the biology of Neurotransmitters.
- 2. Study of color change mechanism.
- 3. Compare the bioluminescent organs.
- 4. Compare the difference between myogenic and neurogenic heart.
- 5. Study the structure and functions of Biomolecules.
- 6. Study the physiology of environmental stress and strain.

M.Sc. I Course: SEM-I; Paper 1, T₃

- 1. Study the cellular organization and cell signaling.
- 2. Study the physiology of cancer.
- 3. Analyse the Mendelian, Quantitative genetics and Mutation.
- 4. Study the structural and numerical alterations of chromosomes.
- 5. Study the Human Genetics Principles.

M.Sc. I Course: SEM-I; Paper 1, T4

By the end of this course, the students will be able to:

- 1. Discuss various methods of asexual and sexual reproduction in Protozoa.
- 2. Compare the regeneration in Platyhelminthes.
- 3. Study metamorphosis in insects and mechanism of vitellogenesis.
- 4. Describe the pre and post fertilization events.
- 5. Study the cryopreservation technique.

M.Sc. I Course: SEM-I; Practical 1, P₁

By the end of this course, the students will be able to:

- 1. Classify the Invertebrate animals.
- 2. Study the anatomy of different systems of Invertebrates.
- 3. Perform the preparation of permanent slides.
- 4. Study of permanent Invertebrate slides.
- 5. Perform various physiological experiments.

M.Sc. I Course: SEM-I; Practical 2, P2

By the end of this course, the students will be able to:

- 1. Perform the cytogenetic experiments.
- 2. Solve the problems on genetics based on Monohybrid and Dihybrid ratios.
- 3. Study various Human Genetic Traits.
- 4. Perform the Spermatogenesis and Oogenesis in animals.
- 5. Study the histology of male and female reproductive organs and glands.

M.Sc. I Course: SEM-I; Seminar-1, S₁

By the end of this course, the students will be able to:

- 1. Acquire the presentation skills.
- 2. Topics are allotted from the recommended syllabus.

M.Sc. I Course: SEM-II; Paper 2, T₁

By the end of this course, the students will be able to:

- 1. Study the structure and function of Vertebrates.
- 2. Compare the organs and mechanism of respiration in Pisces and Amphibia.
- 3. Compare the appendicular skeleton of vertebrate animals.
- 4. Classify the Chelonia.
- 5. Study the comparative anatomy of brain.
- 6. Discuss the evolution of Man and heart in Vertebrates.

M.Sc. I Course: SEM-II; Paper 2, T₂

- 1. Study of neurosecretory system of different Invertebrate phyla.
- 2. Study the physiology of neuroendocrine glands in Invertebrates.
- 3. Study the structure and function of endocrine glands.
- 4. Describe the hormonal actions and feedback mechanisms of endocrine glands.

M.Sc. I Course: SEM-II; Paper 2, T₃

By the end of this course, the students will be able to:

- 1. Describe the DNA replication, damage and repair.
- 2. Understand the process of transcription and translation.
- 3. Expain the antisense and ribozyme technology.
- 4. Study the isolation and sequencing of DNA.
- 5. Compare the different branches of biotechnology.

M.Sc. I Course: SEM-II; Paper 2, T₄

By the end of this course, the students will be able to:

- 1. Explain the implantation, foetal membrane and placenta in Mammals.
- 2. Describe the process of regeneration, apoptosis and ageing in vertebrates.
- 3. Study MOET and cloning techniques.
- 4. Explain contraceptive techniques.
- 5. Analyse the role of mutants and transgenics in Human walfare.

M.Sc. I Course: SEM-II; Practical 2, P₁

By the end of this course, the students will be able to:

- 1. Perform the Identification and Classification of Vertebrates.
- 2. Explain the different systems in Vertebrates.
- 3. Study of stained permanent preparation.
- 4. Perform microtechnique.
- 5. Compare the skeleton of Fowl and Rabbit.
- 6. Study histological slides of endocrine glands.

M.Sc. I Course: SEM-II; Practical 2, P2

By the end of this course, the students will be able to:

- 1. Perform the demonstration of biomolecules.
- 2. Perform histochemical analysis of protein, acid and alkaline phosphatase.
- 3. Perform biochemical estimation of sugar, protein, DNA and RNA.
- 4. Perform qualitative analysis of bile.
- 5. Demonstrate separation of amino acids by paper chromatography and TLC.
- 6. Study reproductive system in Mammals and types of eggs.
- 7. Study of developmental stages of Frog and Chick.
- 8. Perform sperm count experiment and preparation of Chick embryo slides.

M.Sc. I Course: SEM-II; Seminar-2, S₂

- 1. Acquire the presentation skills.
- 2. Topics are allotted from the recommended syllabus.

M.Sc. II Course: SEM-III; Paper 3, T₁

By the end of this course, the students will be able to:

- 1. Understand the life cycles of various Bacteria and Viruses.
- 2. Understand the life cycles of various Protozoan Parasites.
- 3. Compare Innate and Adaptive immune system.
- 4. Study the physiology of Cytokines.
- 5. Understand the hypersensitivity reactions.
- 6. Study the Transplantation and Tumor Immunology.

M.Sc. II Course: SEM-III; Paper 3, T₂

By the end of this course, the students will be able to:

- 1. Study the origin and evolution of fishes.
- 2. Study the development of jaws and limbs in fishes.
- 3. Analyse the general characters, classification and affinities of Placoderms, Elasmobranch, Actinopterygii & Dipnoi.
- 4. Study the respiratory system of fish.
- 5. Study the physiology of Accessory respiratory organs.

M.Sc. II Course: SEM-III; Paper 3, T₃

By the end of this course, the students will be able to:

- 1. Understand the Fresh Water, Estuarine & Marine fisheries.
- 2. Understand the culture of exotic fishes, monoculture & monosex culture.
- 3. Study the Catfish, Trout, Ornamental fish, Sea Weeds & Spirulina culture.
- 4. Compare the Pearl, Oysters, Prawn and Frog culture.

M.Sc. II Course: SEM-III; Paper 3, T₄

By the end of this course, the students will be able to:

- 1. Explain the importance and conservation of wild life.
- 2. Compare the International Conservation Bodies.
- 3. Study the Predatory-Prey relationships.
- 4. Analyse the social organization in carnivores and primates.
- 5. Discuss the wild life population and pest management.
- 6. Evaluate Avian Systematics.
- 7. Compare the Bird diversity and breeding.

M.Sc. II Course: SEM-III; Practical 3, P₁

- 1. Study parasitic Protozoans, Helminthes and Insect vectors.
- 2. Identify the ecto and endoparasites.
- 3. Study of Insect vectors and their mouth parts.
- 4. Identify the Gram positive and Gram negative bacteria.
- 5. Study Immunoelectrophoresis, ODD and Immunological diagnosis of pregnancy.
- 6. Identify lymphoid organs, T & B cells and mast cells.

M.Sc. II Course: SEM-III; Practical 3, P2

By the end of this course, the students will be able to:

- 1. Identify the local fishes.
- 2. Study the anatomy of fishes.
- 3. Compare the nervous system of Wallago & Labeo.
- 4. Identify the various developmental stages of fish.
- 5. Perform the preparation of permanent slides of fish scales.
- 6. Perform estimation of various physiology experiments.

M.Sc. II Course: SEM-III; Seminar-3, S3

By the end of this course, the students will be able to:

- 1. Acquire the presentation skills.
- 2. Topics are allotted from the recommended syllabus.

M.Sc. II Course: SEM IV; Paper 4, T₁

By the end of this course, the students will be able to:

- 1. Discuss the sterilization techniques and tissue culture practices.
- 2. Study of basic principles of Sedimentation, Centrifugation and Radioactive Isotopes.
- 3. Explain TLC, gas chromatography and electrophoresis.
- 4. Analyse biostatistic principles.
- 5. Study the physiology of toxicants and justify with toxicity tests.
- 6. Explain the Bioinformatic principles and phylogenetic analysis.

M.Sc. II Course: SEM IV; Paper 4, T₂

By the end of this course, the students will be able to:

- 1. Describe the internal structure of fish visceral organs.
- 2. Study the structure of chemosensory organs.
- 3. Describe migration in fishes and role of hormones.
- 4. Describe male and female reproductive systems.
- 5. Explain the structure, functions and hormones of endocrine glands.

M.Sc. II Course: SEM IV; Paper 4, T₃

By the end of this course, the students will be able to:

- 1. Construct the ponds and its management.
- 2. Understand the conservation of fish, legislation and their importance.
- 3. Describe migration in fishes and role of hormones.
- 4. Discuss water pollution and inland fisheries.
- 5. Compare the phytoplanktons and zooplanktons.
- 6. Understand fish marketing, curing and preservation of fish.
- 7. Describe the fish products and bi-products, fish pathology and diseases.

M.Sc. II Course: SEM IV; Paper 4, T₄

- 1. Study the radiation biology.
- 2. Analyse the effect of radiation on human health.
- 3. Study the central and peripheral circadian clock system.
- 4. Compare circadian pacemaker system in *Drosophila* and Rodents.
- 5. Describe the centers of biological clock.

- 6. Compare depression and sleep disorders.
- 7. Discuss the Chronopharmacology, Chronomedicine and Chronotherapy.

M.Sc. II Course: SEM-IV; Practical 4, P1

By the end of this course, the students will be able to:

- 1. Perform surgical ablation of gonads in fishes.
- 2. Study normal differential count and effect of stress on blood.
- 3. Perform the estimation and separation of proteins in blood serum.
- 4. Study of permanent histological slides of fish.
- 5. Compare the skeletal system of Wallago and Labeo.
- 6. Explain weberrian assicles and accessory respiratory organs in fish.
- 7. Perform assessment of maturity of gonads in fish.

M.Sc. II Course: SEM-IV; Project

By the end of this course, the students will be able to:

1. Respective faculties allot the projects works to students as per their choice.

M.Sc. II Course: SEM-IV; Seminar-4, S4

- 1. Acquire the presentation skills.
- 2. Topics are allotted from the recommended syllabus.

DEPARTMENT OF ZOOLOGY

PROGRAMME: B.Sc.

Statements of Programme Specific Outcomes (PSOs)

By the end of this course, the students will be able to:

- 1. Compare the life and diversity of Animals-Nonchordates (Protozoa to Annelida).
- 2. Understand the biology of environment.
- 3. Compare the life and diversity of Animals-Nonchordates (Arthropoda to Hemichordata).
- 4. Explain the biology of cell.
- 5. Compare the life and diversity of Animals-Chordates (Protochordata to Amphibia).
- 6. Study the concepts of Genetics.
- 7. Compare the life and diversity of Animals-Chordates (Reptilia, Aves & Mammals).
- 8. Study the principles of molecular biology and immunology.
- 9. Study the physiology of Mammals.
- 10. Discuss the Aquaculture practices and Insects of economic importance.
- 11. Explain the principles of Biotechniques, Microtechniques, Biotechnology, Bioinformatics and Biostatistics.

Statements of Course Outcomes (COs)

B.Sc. Course: SEM-I, Paper-1

Course Outcomes: By the end of this course, the students will be able to:

- 1. Identify and classify the general character of phylum protozoa, Porifera, Coelenterate, and Helminthes.
- 2. Describe the parasitic protozoa of man.
- 3. Explain the structure, life cycle and classification of *Sycon* and *Obelia*.
- 4. Describes the general characters and classification of phylum Annelida.
- 5. Define vermiculture and its importance.
- 6. Justify the elementary idea of parasitic adaptions in Helminthes.

B.Sc. Course: SEM-I, Paper-2

Course Outcomes: By the end of this course, the students will be able to:

- 1. Define atmosphere and its major zones with its importance.
- 2. Explain renewable and non-renewable energy sources.
- 3. Summarize pond ecosystem.
- 4. Define biodiversity and its conservation with cause of reduction in biodiversity.
- 5. Describe hotspot of Biodiversity in India.
- 6. Summarize water, air and noise pollution with source and control measures.

B.Sc. Course: SEM-I, Practical-I

- 1. Identify and classify the museum specimens from phylum Protozoa to Annelida.
- 2. Study the permanent slides.
- 3. Describe dissection of digestive, nervous and reproductive system of earthworm.
- 4. Perform the practical of DO, CO₂, pH & total hardness of given water sample.
- 5. Describe pond ecosystem.

B.Sc. Course: SEM-II Paper-1

Course Outcomes: By the end of this course, the students will be able to:

- 1. Identify and classify the general characters of Phylum Arthropoda, Mollusca, Echinodermata and Hemichordata.
- 2. Describe the insects as a vector.
- 3. Explain the pearl formation in Mollusca.
- 4. Describe water vascular system and locomotion in Starfish.
- 5. Explain digestive system and reproduction in Balanoglossus.
- 6. Describe the affinities of Balanoglossus.

B.Sc. Course: SEM-II, Paper-2

Course Outcomes: By the end of this course, the students will be able to:

- 1. Describe the ultrastructure of prokaryotic and Eukaryotic cells.
- 2. Explain the ultrastructure of Mitochondria.
- 3. Describe the electron transport chain and terminal oxidation.
- 4. Explain the structure of ribosome and Lake's model.
- 5. Justify mitosis and meiosis cell division.
- 6. Summarize cellular aging and cell death and elementary idea of cancer and its causative agents.

B.Sc. Course: SEM-II, Practical-2

Course Outcomes: By the end of this course, the students will be able to:

- 1. Identify and classify the museum specimen's of phylum Arthropoda to Hemichordata.
- 2. Study the permanent slides.
- 3. Perform the dissection of digestive and reproductive system of Cockroach and nervous system of Pila.
- 4. Perform the practical's of cell biology.
- 5. Perform the experiments of Ocular Micrometer and Measurements of micro objects.

B.Sc. Course: SEM-III, Paper-1

- 1. Identify and classify the general characters of *Herdmania*, *Amphioxus*, Pisces and Amphibia.
- 2. Describe the silent features of Agnatha.
- 3. Explain the parental care in Amphibia.
- 4. Describe the gametogenesis and types of eggs.
- 5. Identify the types of scales of fish and describe the developments of placoid scales.
- 6. Describe the frog embryology and development of respiratory organs in frog.

B.Sc. Course: SEM-III, Paper-2

Course Outcomes: By the end of this course, the students will be able to:

- 1. Describe Mendelian principle and interaction of genes.
- 2. Explain quantitative genetics and extracellular genome.
- 3. Describe linkage and crossing over and genetic disorders in human beings.
- 4. Define concepts of genes and chromosomal aberrations.
- 5. Describe disorders related to chromosomal number and genetic counselling.
- 6. Explain lethal genes and gene mutations.

B.Sc. Course: SEM-III, Practical-3

Course Outcomes: By the end of this course, the students will be able to:

- 1. Identify and classify the museum specimens from Urochordata to Amphibia.
- 2. Explain digestive, reproductive system and brain of fish.
- 3. Study the permanent slides.
- 4. Perform the experiments of genetics and permanent stained preparation.
- 5. Describe the genetic traits and syndromes.

B.Sc. Course: SEM-IV, Paper-1

Course Outcomes: By the end of this course, the students will be able to:

- 1. Identify and classify the general characters of Reptilia, Aves and Mammals.
- 2. Describe the modern theories of evolution, adaptations and races in Man.
- 3. Discuss the comparative account of aortic arches in Reptiles, Birds and Mammals.
- 4. Describe the development of chick embryo and embryonic membranes.
- 5. Discuss the blastocyst and implantation in mammals and stem cells.
- 6. Explain the biological clock and role of pheromones.

B.Sc. Course: SEM-IV, Paper-2

Course Outcomes: By the end of this course, the students will be able to:

- 1. Describe the structure of DNA, forms of DNA and RNA and prokaryotic and eukaryotic gene structure.
- 2. Explain recombination in bacteria and DNA replication and genetic code.
- 3. Explain mechanism of protein synthesis.
- 4. Define the concept of immunity and antigen-antibody interactions.
- 5. Describe the types of immune response and complement system.
- 6. Discuss autoimmunity and immunodeficiency.

B.Sc. Course: SEM-IV, Practical-4

- 1. Identify and classify the museum specimens from Reptilia, Birds and Mammals.
- 2. Explain the skeleton of Rabbit and Foul.
- 3. Perform the experiment of developmental biology experiment and study of permanent slides.
- 4. Perform the molecular biology experiments and describe the laboratory instruments.
- 5. Perform immunological experiments of blood groups and describe histological slides.

B.Sc. Course: SEM-V, Paper-1

Course Outcomes: By the end of this course, the students will be able to:

- 1. Describe the chemical nature of enzymes and enzymatic activity.
- 2. Explain the structure and function of digestive glands and their hormones.
- 3. Compare the fat soluble and water soluble vitamins.
- 4. Explain various respiratory pigments, their types and mechanism of respiration.
- 5. Explain transport of O_2 and CO_2 , various respiratory disorders and effect of smoking.
- 6. Describe composition and function of blood, blood factors, blood groups and cardiac cycle.

B.Sc. Course: SEM-V, Paper-2

Course Outcomes: By the end of this course, the students will be able to:

- 1. Explain site selection and construction of fish pond, management and rearing of fish.
- 2. Comparepolyculture, cage culture, fed fish culture and integrated fish forming.
- 3. Explain prawn culture and pearl culture.
- 4. Describe various method pest controls such as chemical control and biological control.
- 5. Classify and identify various pest of cotton, store grain pests, animal pests.
- 6. Classify and identify mulberry and non-mulberry silkworm, honey bees and lac culture.

B.Sc. Course: SEM-V, Practical-5

Course Outcomes: By the end of this course, the students will be able to:

- 1. Perform action of salivary amylase on starch and detection of carbohydrate, protein and lipids.
- 2. Identify histological slides of various glands.
- 3. Perform dissection of digestive system and brain of fish
- 4. Perform whole mount preparation of scales of fishes and zooplanktons
- 5. Identify and classify agricultural pest, medical pest, and veterinary pest.

B.Sc. Course: SEM-VI, Paper-1

Course Outcomes: By the end of this course, the students will be able to:

- 1. Explain types of neurons and E.M. structure of neuron.
- 2. Describe properties of muscles and conduction of nerve impulse.
- 3. Describe the structure of uriniferous tubules and mechanism of urine formation.
- 4. Compare normal and abnormal constituent of urine.
- 5. Describe the structure and function of pituitary gland, thyroid gland, adrenal gland and pineal gland.
- 6. Explain menstrual cycle, male and female sex hormones and causes of infertility in male and female.

B.Sc. Course: SEM-VI, Paper-2

Course Outcomes: By the end of this course, the students will be able to:

- 1. Describe various bio-techniques such as sterilization, separation of biomolecules and electrophoresis.
- $2. \quad \text{Explain various micro-techniques like dehydration, fixation, section cutting and double staining.} \\$
- 3. Perform histochemical staining techniques for carbohydrates, proteins and lipids.
- 4. Discus about recombinant DNA technology, Vectors and Splicing mechanism.
- 5. Explain concept of Bioinformatics and types of Databases.
- 6. Explain protein databases.

B.Sc. Course: SEM-VI, Practical-6

- 1. Perform sperm count in semen sample and detection of urea and sugar in urine.
- 2. Identify histological slides like T.S. of Kidney, Adrenal gland, Testis, Ovary etc.
- 3. Perform block preparation and section cutting.
- 4. Perform double staining method.